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A Kuhn-Tucker cavity method for generalization” with 
applications to perceptrons with Ising and Potts neurons 

F Gerlt and U Kreyt 
t lnstitut fur Theoretische Physik der Universitit Gijttittingen, Bunsenstr. 9, D-30373 Gijttingen, 
Germany 
$ lnstitut fur Physik I1 der Universitit Regensburg, Univeisitittsstr. 31, D-93040, Germany 

Received 3l~October 1994. in final form 7 August 1995 

Abstract. Within the framework of statistical physics. we derive a cavity method for 
generalization by prceptrons. where the Kuhn-Tucker conditions for optimal stability are built 
into the cavity fields. In this way, the calculation of the generalization ability for leaming 
processes leading to optimal stability is simplified. Within our approach. the degrees of freedom 
of the neumns can be rather arbirmry. For perceptrons with king n e u “  we relate OUT method 
to the traditional replica approach. New results are obwined for Q-state Potts model perceptrons, 
including the asymptotic behaviour for 01 -f CO and general Q. 

1. Introduction 

In a recent paper, [I], we have treated the learning problem for Q-state Potts model 
perceptrons within the framework of statistical physics by a general method based on a 
cavity formalism. In this method, the Kuhn-Tucker conditions, which lead to optimal 
stability in AdaTron  type^ learning processes, have been built into the cavity formulation. 
In this way, we obtained a number of exact results for learning with maximal stability for 
Potts model networks in [I], and in [Z] for the clock model case. 

In the present paper, we extend our Kuhn-Tucker cavity approach to the more 
complicated generalization problem. There one considers two automata, each possessing 
the same number and type of input units and one output unit. The inputs to the automata 
are termed ‘questions’, and the outputs ‘answers’. One of these automata, ‘the teacher’, is 
fixed, and her answers are ‘correct’ per definition, whereas the second one, ‘the student’, 
has couplings, which are changed in the course of a training process during which she tries 
to minimize the number of errors of her answers with respect to a set of random ‘questions’. 
Of course, this problem can be extended, e.g. to cases, where the ’teacher’ gives the correct 
answer only with a certain probability. However, in the following, such extensions will not 
be considered. 

An extensive description of generalization problems in the case of perceptrons with 
Ising neurons bas been given by Watkin et al [3]. In section 2 we demonstrate our cavity 
method for this case and find that the results from our Kuhn-Tucker cavity approach 
agree with those obtained by the traditional replica approach, see [4], although our two 
self-consistency equations are different from those of [4] (see below). Moreover, in this 
section we present a detailed derivation and comparison of both approaches by cavity 

* Based on the PhD thesis of F Gerl, Regensburg 1994. 
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arguments, which lead to insights allowing the treatment of more complex systems. The 
cavity arguments corresponding to the replica approach generalize ideas of Griniasty [5], 
and arr equivalent to the assumption of replica symmetly, whereas our approach is more 
general, see [6]. Finally, at the end of section 2 we find it useful for numerical calculations, 
to combine equations from both approaches in a certain, non-trivial way. 

In section 3, we extend these studies to the case of Potts perceptrons: we assume that 
both automata have the same number N of Q-state Potts input neurons and one Q-state 
output neuron, and real couplings, see below. For this case, we obtain accurate results for 
the generalization ability G(U,  Q )  and for the information gain AIze!(a, Q )  for Q ranging 
from 3 to 1OOO. To our knowledge the generalization ability of Potts perceptrons with 
optimal stability has up to now only been treated in the so-called annealed approximation, 

For both cases, i.e. for the perceptron with king neurons and fcr the Potts model 
case, both with real couplings subject to the usual spherical constraint, the desired maximal 
stability and good generalization properties can be obtained by the fast and efficient AdaTron 
learning processes defined in 18, 21 respectively. An even better generalization would be 
obtained with the so-called ‘optimal (i.e. Bayesian) perceptron’ as discussed by [3, 91; 
however, the ‘optimal perceptron’ is not easily approximated and therefore not discussed in 
the following. 

In [61, one of us has treated further problems with our Kuhn-Tucker cavity method, for 
which a replica-symmetric approach does not suffice, in contrast to the present situation. 
Those additional results of [6] will be published in a subsequent paper [lo]. 

F Gerl and U Krey 

~71. 

2. Generalization for perceptrons with Ising neumm 

2.1. Basic equations 

We consider perceptrons with N input neurons, s := (SI, . . . , SN), and (for simplicity) one 
output neuron sour. Here the si and souI are binary variables, e.g. si = *I (‘king neurons’). 
The output (‘answer’) generated by the input vectors (‘question’) is given by the usual rule 
for simple binary perceptrons 

which means that the perceptron classifies the inputs, or ‘gives answers to input questions’. 
Now let us consider two perceptrons with couplings J l  and Jk,  respectively, the ‘teacher’ 
and ‘student’ perceptrons, and a ‘training set’ of p questions = 60 := ((f, ~. . , (,$ for 
p = 1,. . . , p .  The correct answers to any questions, particularlythose to the ‘training 
questions’, {g, are given by the teacher,perceptron (p‘ 5 5,”). Thus it is the student’s task 
to adapt her couplings in such a way by a certain learning process (see below) that she 
gives the correct answers to the training questions. 

The measure of performance of the student perceptron, after just having ‘learnt’ 
p := 01. N training questions (@ with answers $ sign[cr=, J:$‘x”], is the generalization 
probability G(ol), namely thcprohability to answer an additional random question in the 
same way as the teacher. (More generally this is the task to learn a given ‘rule’ from 
p = (YN questions.) 

In the following we assume for simplicity that the question bits are chosen randomly as 
i l  with probability 4. Concerning the teacher we then only have to assume that the output 
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is not dominated by very few couplings J f ?  see below. The quantity 01 = p /N is usually 
called the ‘loading parameter’. 

Let us denote by 

the so-called preghpric$elds at the output nenron of the teacher and the student perceptran, 
respectively, generated by the question .$+ - := (er, . . . , c;), which is drawn from the already 
mentioned ‘training set’ with g = 1 , .  . . , p(= arN) questions. For simplicity, the length of 
the teacher’s coupling vector J’ := ( J T , .  . . , J N )  is normalized as ]LrI2 = 1 (as already 
mentioned). 

In contrast, for the student perceptron the length L := is minimized in the course of 
the AdaTron training process, see below, i.e. the stability K := 1/L is maximized. 

Also the presynaptic field h: at the teacher’s output neuron is then (i.e. under the above- 
mentioned conditions concerning the couplings) for N >> 1 a Gaussian random number with 
average 0 and variance 1,  i.e. ‘normally distributed’. Now the output of the teacher, i.e. 
‘the correct answer’ to the ‘question’ c p .  is <,” := sign(hg). Therefore, the so-called re- 
orienred field of the teacher,~EG = #h;, is a random variable x with the probability density 
p(x) = (@(x)/&)exp(-xZ/2), where @(x)  = 1 for x z 0, = 0 for x < 0. 

2.2. The re-orientedfeld of a new panern 

If now an additional pattern with index g = 0 is added to the training set, the re-oriented 
presynaptic field (i.e. re-oriented with the teacher’s answer) of the student is 

- 

where the-is introduced to indicate that one is dealing with the ‘bare’ re-oriented cavity 
field, i.e. before any additional training. Crucial in constructing this non-Gaussian random 
number is the overlap R between the teacher and student perceptrons 

which also characterizes the statistical physics of our learning process. 
The coupling vector of the student perceptron with length L := I J I  can be decomposed 

into a component of length R . L parallel to the coupling vector of the teacher perceptron 
and a part of length m. L perpendicular to it. We introduce two normally distributed 
random numbers u I  and U?, which characterize the local fields generated by the normalized 
coupling vectors in these directions according to (3). We then get for the re-oriented 
fields generated by the new patterns at the teacher’s and student’s output neuron, rl and t2, 
respectively, 

tl := lu l l  rz : = L ( R l u l l + ~ u ? ) .  (5) 

P ( t l , t 2 )  = S J D U ~ D ~ ~ S ( ~ ~  - I ~ ~ I ~ G ~ ~ ~ - - L ~ R I ~ ~ I + ~ ~ ~ ~ ~  

The probability density for the pair ( f l ,  tz) is 
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where Dx = exp(-x2/2)dx/l/2;;.- The probability density for the bare re-oriented 
presynaptic field Eo = tz at the student’s output neuron simplifies to 

F Gerl and U Krey 

with @ ( x )  = J:,Dz. Correct classification implies rz > 0, which leads for given overlap 
R to the generalization abilify 

(8) 
1 

G(R) := dtz P(t2) = 1 - - ZCCOS(R). 7 0 72 

These, of course, are known results of [4], and only repeated here for later purposes. For 
the Potts perceptron, the equations are considerably more complex (see section 3). 

2.3. System response for optimal stability 

In the following we calculate the overlap R under the condition of optimal stability as a 
function of a. With equation (8) one can then derive G as a function of a. Here we 
use the Kuhn-Tucker conditions (see below) and cavity arguments as in [ l ]  concerning the 
necessary response of the system to maintain these conditions for the already stored patterns 
in the presence of the newly added pattern, which must also be stored. 

The couplings of a perceptron trained for optimal stability can always be expressed in 
the form [SI 

with the so-called ‘embedding strengths’ xe  > 0. As can be shown using Lagrangian 
multipliers [8, 11, these embedding strengths have to fulfil the so-called Kuhn-Tucker 
conditions, see below. Without restriction of generality, these are usually formulated by 
fixing the length L of the coupling vector 1 in such a way that the stability limit f o r i  > 0 
corresponds to E” = 1, i.e. L = K-’ .  With this convention, which we always use in the 
following, unless otherwise stared. the Kuhn-Tucker conditions are 

either (x” =- 0 and E” = 1) or (x” = 0 and E” > 1). (10) 

6x” = max(-x”, 1 -E’) (sequentially or in parallel) (11) 

In fact the AdaTron algorithm (without overrelaxation) of Anlauf and Biehl [SI, 

simply fixes the x’ repeatedly to values which fulfil the Kuhn-Tucker conditions (10). If 
the algorithm converges, the conditions are therefore automatically obeyed. 

Using the ‘oriented correlation’ matrix 
N 

I ” ~Y B” <$<; N -  f k  f k  
k= I 

and the definition (21, we can write for the re-oriented field E’ 

k Y 

With the Kuhn-Tucker conditions we have finally 

(12) 

(1  3) 
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As in [ 11, we now add a new ‘question’ to to the training set, with correct answer 5: 
given by the teacher. If the new training pattern (‘question’) is not incidentally answered 
correctly and with sufficient stability with unchanged J K ,  i.e. with do > 1, then one tries 
to embed it with xo = 1 - 8’ z 0, see equation (11). Here Eo has been defined in (3), 
and as already mentioned, the - only reminds us of the fact that one is dealing with the 
re-oriented field before embedding of the pattern 6’. The change of the couplings due to 
the introduction of xo leads to a perturbation of order 5 O ( l / a )  of the presynaptic fieids 
generated by the other stored pattems, so that the Kuhn-Tucker conditions of (IO) are now 
generally violated. 

The Kuhn-Tucker conditions are then restored by a parallel AdaTron step (set. below). 
This restoration corresponds to a ‘macroscopic response’ of the systems (i.e. the couplings). 
As in [l], all furthr. -storing steps lead only to corrections of order O( l / f i )  in the 
response and are therefore neglected in the thermodynamic limit N + W. Additionally, 
for the desired accuracy U ( l / f l )  it can be assumed that the x” and the matrix elements 
BUY are uncorrelated. 

To be specific, the ‘embedding perturbation’ yg, which is generated by the newly added 
pattern 0 and afflicts the pattem p with x” > 0,  is^ y” = BP0xo. Therefore it necessitates 
the correction Sx” = -BP0xo . In all, these corrections Tor p’= 1, . . . , p generate at pattem 
0 a response field . .  ~~ 

(15) 0- BOPSxP = - (B0W)Zxo gx - ~ 

P.,Z’L>O) ”.(X<‘>O) 

which reduces the effect of the AdaTron step with xo.  Therefore, one has to enhance 
xo = 1 -do by an amplifrcation factor 1/(1 +g)(>I). 

Now the (BOP)’ are I /N on average, see (12). Therefore ,one gets immediately 

- (BO’)’ = crP(x’ > 0) =: ueff (16) 
P . W > O )  

where creff is the percentage of exhausted degrees of freedom, i.e. if pattern 0 is as typical 
as the other random patterns fi  = 1. . . . , p ,  one has to postulate 

(17) 
!~ 

g=-c re f f= -c r . fy t2<I )  > ( - l ) .  , 

With these results, using E” = xu B’”x” and L’ = N - l i r  
self-consistently all desired quantities by our Kuhn-Tucker cavity method. 

2.4. Se!$-consistency equations with the cavity method 

We proceed as in section 5 of [I], starting with the Kuhn-Tucker conditions and then using 
the probability density w ( x )  for the embedding strengths: 

2, we can now calculate 
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Here, in agreement with the considerations in the last subsection, we have written the 
embedding strength asx = O(1 - t ; ) ( l - t ; ) / ( l+g) .  Furthermore, K L  = 1 and i2 := t z / L .  
Finally, replacing L by 1 / ~  and substituting g from (17), we get 

F Gerl and U Krey 

or 

’ In equation (20) the integration region is 

s= {(UI,U;)IRIUII+\/~--~~ZUZ G K ) .  (21) 
From equation (20) one can derive a set of formal solutions cu,,(R, K ) ,  depending on R; 
however, of all these functions only one is relevant: namely, R has to fulfil a certain self- 
consistency requirement (see equation (23) below). Together, the two equations (20) and 
(23) fix the desired result a ( R )  := ~ ( R ( K ) ,  K ) ,  which can be inverted to yield R(LY). 

Mathematically, the just-announced self-consistency equation (23) for the overlap R 
between student and teacher couplings can be derived as follows: a typical pattern. which 
generates a reduced presynaptic re-oriented field i; := E / L  < K at the student’s output 
neuron, requires an (enhanced) embedding strength x = (K -&)/(l+g). If it simultaneously 
generates the re-oriented pre-synaptic field TI at the teacher’s output neuron, this leads to 
a contribution xr ,  in the direction of the fixed teacher’s coupling vector. Summing up all 
these contributions leads to 

Here P ( r , ,  iz) is obtained from P(rl. t;) in (6) by formally putting L = 1 there. 

the announced self-consistency equation complementing (ZO), namely 
Multiplying again with (1 + g). inserting (17), and integrating finally over f l ,  we get 

(23) 
Together equations (20) and (23) determine R@), and therefore C(E) as well, see 

equation (8). Examples will be given below in figure I ;  those results are special cases 
Q = 2 of the corresponding figures for the general Potts model case in the next’section. 

2.5. Heuristic derivation @the replica-symmetric results 

We now give a short heuristic derivation of the set of formal solutions ar~s(R, K )  derived 
from the replica rheov under the assumption of replica symmetry, i.e. from the first self- 
consistency equation (21) in [4]. As we will see immediately, IY=(R,K) differs from 
acaV(R, K ) ,  except at the ‘stationary value’ R = R&), where (23) is fulfilled with 
01 = a,,(Ro, K ) .  Moreover, this requirement for R = Ro, namely 01u(R, K )  = u,(R, K ) ,  
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Figure 1. Graphical representation of the olculotion of the desired relation n ( R ( x ) .  x )  between 
the reduced number U := P I N  of correctly leamed 'questions with answers' and the related 
stationary "due R(K) .  Here R is the scalar product between teacher and Student coupling unit- 
vecton. In our Kuhn-Tucker cavity approach, R is changed to R'(R), if for given R and K 

at fint LI is calculaed from (11) and then R' from (14). In contrast. R remains unchanged 
(R' = R )  by the replica approach. For x = 0.720037 (leading to Ro := R(K).  = 0.7 and 
L I ( R ( K ) , K )  = 1.12678) the behaviour of our cavity method and of the replica-symmetric 
approach is compared: The two respective upper CUNeS. u,,,(R, x )  and LIRS(R, K), agree only 
for R = 0 and for the stationary value Ro, where c ( R ,  K )  is maximal. This value Ro = R ( K )  
yields the desired monotonic relation ar(Ro). and just there R is unchanged by our cavity leaning, 
as shown in the lower pM of the figure. 

can be replaced by the postulate that for given K the function f ( R )  := ~ R S ( R ,  K), should 
have a maximum at Ro, which leads to the second self-consistency equation (21) in [4]. In 
contrast, a,,(R, K) is not maximal at R = Ro. 

In [5], Griniasty has already developed a cavity theory of perceptron learning 
(but not of generalization), which .is different from ours and completely equivalent to 
replica calculations in the replica-symmetric approximation. In his derivation, Griniasty 
concentrates on minimizing cost functions instead of using a learning algorithm. In section 5 
of his paper he develops a simplified version (which, in OUT opinion, nevertheless catches 
the spirit of his method) to derive a certain constant of integration, namely, he.shows that 
one can arrive at the replica results, if one makes the incorrect, but consistent assumptions 
that both the reaction field gxo and the correlations B"" = N-' E,"=, $t[t;<$ for p # U 
vanish. 

With these two assumptions, in our case one can obtain the final embedding strength 
x& (which corrects t2, the field before training, whose probability distribution is given in 
(7)) by a simple AdaTron learning step (1 1). We then calculate the length of the coupling 
vector, which again has to be consistent. Since we now cannot determine R from the linear 
combinations of the patterns as in (22), we have to actively fix the overlap R with the 
teacher. This implies that now the relevant length of the coupling vector is not L2 as in 
[I], but L2. ( I  - Rz).  Therefore, with the just-mentioned assumptions we get 
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which implies 

Equation (25), which determines ou ra~s (R ,  K), is identical with the first self-consistency 
equation (21) in the replica calculation of [4]. The second self-consistency equation of (21) 
in [4] was already mentioned: among the possible values of R,  'the optimal student chooses 
that one, which maximizes the number of patterns which can be stored with the given 
stability. Together with (2.5). this implies 

--oo 

Interestingly, instead of calculating Ro from (20) and (23) (cavity approach), or from 
(25) and (26) (replica calculation), one can also combine the 'best of either set', namely 
(20) and (23 ,  see below. 

2.6. Results for perceptrons with king neurons 

The different philosophies of the two approaches become clear, as we compare the results 
obtained with our Kuhn-Tucker cavity approach, i.e. equations (20) and (23). with those 
obtained with the 'replica formalism', i.e. (25) and (26) in figure 1 .  

As already mentioned, and as can be seen in figure 1, the results agree at the extremal 
overlap value R = Rc,, which corresponds to the uniquely determined saddle point of the 
RS solution. The disagreement for R # Ro, however, does not imply contradictoly results. 
Instead, what happens is that the extremal point is approached along different paths. In 
the lower part of figure 1, we present the function R'(R). This is obtained, if for given R 
and K, at first a,,, is calculated from (20) and then, with a = aCaV, R' from (23). As we 
increase R the patterns become progressively easier to store and acav grows monotonically 
(see the chain curve in figure I ) .  Only for R = RI, however, is the solution valid. 

We now discuss the full curve in figure 1, representing a=. As mentioned before, this 
is the storage capacity, if the student has a certain jired overlap R with the teacher. For 
R = 0 the problem reduces to storing randomly oriented patterns, and au is equal to acyeuv. 
With increasing R -+ Ro the patterns become easier to store, i.e. LYRS increases, until at RO 
the maximum is obtained, where again ERS = cxMv. Then, for R > Ro, the fixation of the 
overlap R with the teacher drastically lowers the number of  patterns p = N . am, which 
can be stored, as R -+ 1 .  Finally, for R = 1 no extensive number of patterns can be stored 
(i.e. CLRS = O), because the teacher herself has stability K = 0 for random patterns. 

As stated above, for R = RO one can use either the cavity equations (20) and (23) 
or the RS equations (25) and (26); but an easier and numerically more accurate way is 
to combine the simplest equations from both methods, i.e. equations (20) and (25), into a 
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single equation for R, namely 

The loading parameter a(R) as a function of the overlap R is then obtained, e.g. from 
equation (20). 

Most interesting is the behaviour for R +~ 1, i.e. K + 0 or (Y -+ CO. In this case, the 
Gaussian measure D& in (27) is practically stationary in the relevant region, so that the 
integrals over diz can be evaluated. With U := K/-, one then obtains the implicit 
equation 2n-1'z(l - I / &  exp (-u2/2)+u@(u) = 0, which yields U = 0.638 833 215 8 . .  . . 

Introducing this into (25) for the loading parameter a, one obtains for perceptrons with 
king neurons, with c := 1.998046 18.. . asymptotically for OL -+ CO the overlap 

(28) 
1 nz 
2 C W  

R(a)= l - - -=  1 - K 2 x  1.23611451 ~.. .  
and with (8) the generalization probability 

(2% 
I 

G(u) Y 1 - - = 1 - a-' x 0.50048893.. . . 
Cff 

Finally, the optimal stability ~ ( 0 1 )  is for given 01 

(30) 

Further, for a -+ CO, the asymptotic behaviour of g is that of ( -R(a)) .  Thus the results 
from our cavity approach agree completely with those of the replica calculation of [4]. 

U n  

C f f  
~ ( a )  Y - = a-' x 1.004458 132.. . . 

3. The generalization ability of the Potts perceptron with optimal stability 

What has been gained in the preceding section are two simple cavity methods, which can 
even be combined with some care, to calculate the generalization ability for perceptrons 
with king neurons and real couplings under the usual spherical constraints. The methods are 
(i) our Kuhn-Tucker cavity method of section 2.3, which (as we will see in a forthcoming 
paper) can also be applied to situations, where replica symmetry is broken (although in 
that case it is no longer exact), and (ii) the cavity approach of section 2.4 based on 'noise 
arguments' B la Griniasty, see [5], which is equivalent to the replica calculation for non- 
broken replica symmetry ('RS approach'). In  the preceding section, we have demonstrated 
the similarities and differences between these two approaches, which are equivalent as long 
as the RS approach is correct. The essential point, however, is that both cavity approaches 
are easily applicable to more complicated models. 

In the present section, using these cavity approaches, we will get new results, namely, 
the generalization ability of Potts perceptrons with general values Q and Q of the number 
of states of the input and output neurons, respectively. 

3.1. Basic equations for the Ports case 

For Potts model perceptrons, the input neurons at a site k have Q different states (i.e. 
n k  = 1.. . , , Q below), which are vectors m,; with Q components, 

mn,(s) := e&.", - 1 (31) 
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for s = 1, . . . , Q. For the output neuron, the corresponding quantities are Q' and s', i.e. 
Q and Q can be different. Then the couplings Jk also become more complicated, namely 
one gets s' x s matrices Jk(S' ,  s) for the student and J[(s ' ,  s) for the teacher, respectively, 
which are abbreviated as J (with nom Lz = 151') and JT, respectively (with = 1). 
Their mutual overlap R = L-'@J') is defined as 

F Gerl and U Krey 

where trs,st means 'trace' and t means 'transposed'. 
The sum over s resp. s' of the coupling matrices can be assumed to vanish for both 

perceptrons. These are the usual gauge conditions for Potts systems (see, e.g. (4) and (5) 
in 111). 

It has been shown in [l] that the re-oriented presynaptic field at the student's output 
neuron can be determined for a newly added random pattern by drawing the Q components 
from a Gaussian distribution with average 0 and variance LzQ/(Q' - 1) (for the teacher, 
L = 1). Furthermore, due to the gauge freedom, the component in (1,. . . , 1) direction in 
Q-space is arbitrary as in [l]. At the teacher perceptron a random pattern p generates the 
(non-re-oriented) presynaptic output field 

Finally, the re-oriented presynaptic field E$ of the teacher's output neuron is 

ht (34) = pn'@-I 

where n'" = sec@). Here 'sec' is simply the function (defined already in [Z]), which 
determines the output value n' = 1, . . . , Q of the perceptron from the presynaptic field 
according to the phase space section, to which the field belongs. Similarly, 'Pn''-' is the 
cyclical shift operator, which shifts the maximal component n'fi to the first place, see, e.g. 
equation (17) of [I]. 

3.2. Self-consistency equations for the Potrs case 

In contrast, E,  the re-oriented field of the student, i.e. re-oriented with respect to the 
output of the teacher, can be constructed for a newly added random pattern p = 0 as in 
the preceding section by a decomposition of the coupling vector of the student perceptron 
into two perpendicular components, where the first component is parallel to the teacher's 
coupling vector and has the length R L, whereas the second one of length L m  is 
perpendicular to it. Thus we can write down the generalization probability G ( R )  that for 
such a newly added random pattern (='question') the student produces the same output 
(= 'answer') as the teacher: With the integer n\ := sec(uI) and the Kronecker symbol 
6(n l .  nz) := 1 for nl = n2. :=0 else, we get 

where the Q' components of the vectors U, are normally distributed. 
Here again, learning is a prerequisite for generalization. Therefore, since the learning 

task for the student perceptron with optimal stability has already been treated in [I], we can 
be rather sketchy in the following. As in equation (9) above, there is again a representation 
with embedding strengths z := ( x ( l ) ,  . . . , x ( Q ) ) ,  and again there exists the optimization 
problem equation (26) in [l], which leads to the Kuhn-Tucker conditions for the solution, 
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i.e. equations (30)-(33) in [I], which can be solved by the same AdaTron learning algorithm 
for Potts perceptrons as described there. 

But the subsequent calculation leading to the response of the couplings on a newly 
added pattern is now slightly more complicated than the corresponding calculation in [l]. 
(As in the preceding section. this response is necessary to fulfil the Kuhn-Tucker conditions 
for the new pattern and the already stored ones as well.) The complication is that now the 
re-orienfedfeld 7: of the student (see beiow) must be decomposed into the already mentioned 
components parallel (resp. perpendicular) to the coupling vector of the teacher perceptron. 
For the reaction factor we again obtain g = -a$/(@ - I), where 1 is the average of the 
number k of active directions (see equation (57) in [I]). However, the equivalent to the 
integral (79) in [l] is now the double integral 

with the abbreviation 
3 := RPl-";u, 4- m u 2  (37) 

for the re-oriented field of the student. In equation (36) we have distinguished the (1)- 
comvonent of the embedding vector as that one corresuonding the 'recopnition section' - - - 
of the phase s ace, to which the 'reoriented field' must belong, and we have used 
7: := td-, x,,{t}(l) := x { t } ( l ) J ( Q  - 1)/(QL2), and c = KL = 1 
for the quantity c appearing in the Kuhn-Tucker conditions and the Adatron process 
in 111, see, e.g. equations (29)-(39) there. If we then set L = ,/(Q - l)/Q, we get 
c = KL = K' := KJ(Q' - I ) / Q  as our reduced stability measure, and additionally t = 3. 
The following steps are similar to those leading to (83) in [l]  and lead to the result 

which corresponds to (20) for the case of king neurons (see~above). From this equation, 
ffCav(R, K) can be calculated. (The determination of k{t) and ~ ' ( € 1  is described in [I].) 

As in the preceding section, we need a second condition fixing R = R o ( ~ ) .  One can 
use, for example, the self-consistency condition for the overlap 

Here equation (20) of [l] has been used for the couplings J of the student perceptron with 
optimal stability; E; is the re-oriented presynaptic output field of the teacher perceptron, 
see equation (34); finally, the generation of the presynaptic output fields of teacher and 
student from a Gaussian has been used. as described above. Performing similar steps as 
above, multiplying (39) with 1 +g and inserting the expression for g from above, one thus 
obtains 



6512 F Gerl and U Krey 

To conclude, we stress that (38) generalizes (20) for the determination of o,,(R, K )  
from the Ising case to the Potts case, while (40) corresponds to the additional condition 
(23), i.e. the self-consistency for the critical overlap R .  Both equations have been derived 
with the present Kuhn-Tucker cavity method. 

On the other hand, the generalization of the ‘noise arguments’ h La Griniasty [5 ] ,  is also 
possible and leads without difficulties to 

This equation generalizes (25) and must again be augmented by the condition that for given 
K ,  R = Ro should be chosen such that CURS(R, K ) ,  as determined from (41), is maximal. As 
mentioned in [l] and sketched in [6],  it can be shown by partial integrations that both sets 
of equations are equivalent, but only as long as the replica symmetry is guaranteed, since 
in case of replica-symmetry breaking our approach leads to different results compared with 
the RS approximation, in contrast to Griniasty’s approach (see [5,  61). 

3.3. Evaluation of the integrals and results for the Pons case 

The evaluation of the self-consistency equations for Potts perceptrons requires numerical 
results for the corresponding multi-dimensional integrals. For the special case Q = 2, after 
a suitable rescaling from K‘ to K ,  we regain the results of section 2. The results for Q’ = 3 
are identical to those for clock perceptrons with Q = 3, which have been published in 191. 

For general Q, the integrals can be evaluated quite accurately and efficiently by the 
following Monte Carlo process. Choose a value R between 0 and 1. Then generate 
the Q‘ components of the vector U ,  as independent random numbers drawn from a 
‘normal distribution’, i.e. a Gaussian with average 0 and variance 1. The largest of these 
Q components should be shifted to the first place, so that ?‘-‘;U, represents the re- 
oriented presynaptic field generated by a random input vector at the teacher’s output neuron. 
Then a second vector 2 ~ 2  is generated, again with independently and normally distributed 
components, and the re-oriented presynaptic field t = i! at the student’s output neuron is 
evaluated according to (37). 

With U I  and t ,  all relevant integrals can be evaluated. For the generalization ability one 
has to check for each event, whether the student’s ‘answer’ agrees with that of the teacher. 
For r,,{t} and k { t ]  an AdaTron training step has to be performed with the scaled stability 
c = K‘, by which then the contribution to the integrals (38), (39) and (41) is determined. 

This can be performed with little additional effort simultaneously for different values of 
K’. If one knows the average a from (40) in [ l ]  and the active directions for a certain K’, a 
can then be calculated for a larger K’ in one additional step. One only has to look whether 
for that K’ an additional active direction has to be added to the list. Thus the generation of 
new random numbers and the sorting of components is avoided. 

Figures 2-4 present results (i) for the generalization probability G ( R )  as a function of 
the overlap R,  (ii) for R(u) (where 01 is the loading parameter), and (iii) for G(a) ,  for the 
values Q’ = 2, 3,4,5, 6, 10, 100 and’1000. To produce the curves, we generated 5 x lo8 
random numbers for every point in the plot. For given R, at first a K‘ was guessed, and the 
integrals were evaluated for 60 different K‘ in the vicinity of the first guess, usually with 
full accuracy only in a second iteration. We have found in this way within our statistical 
accuracy that for all points for given R at the intersection of a,, from (38) with uRS from 
(41) also the self-consistency condition (39) was fulfilled. With condition (39), the desired 
values K’(R), and thus a(R, K’(R)),  can be determined more accurately and can better be 
interpolated from neighbouring values. 
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Figure 2. For perceptrons with Potts Q'-state output neurons. the generalization ability G(c, Q') 
is plotted as a function of the overlap R for Q' = 2.3 .4 ,5 ,6 .10 ,  100, 1000. Pmicular values 
are G(0. Q') = l / Q  and G(1, Q') = 1 .  The full curves have been determined for Q' 2 4 by 
the Monte Carlo integration algorithm described in the text. 

ET 

0.4 

0.2 

0 1 2 3 4 5 6 7 
(Y 

Figure 3. The stationary overlap R = Ro(a, Q )  of the student's and the teacher's coupling 
vectors is plotted against the reduced number U = PIN of learned 'questions with answers' for 
Q = 2,3.4,5.6. 10, 100, 1000. 

It is interesting to compare the results of the figures 2 4  with those obtained for the 
clock model in 193. For the clock perceptron, as a function of a, in the limit of Q' 4 w 
one gets a second-order 'phase transition' at a = 2 from a phase with no generalization for 
a < 2 to a 'generalizing phase' at a > 2. More precisely, one has for a > 2 the exact 
inequality G(a) 2 1 -2/a for all values of Q'. In contrast, for the present case of the Potts 
perceptron the generalization ability vanishes at Q' = 00 for all finite values of a, and not 
only for a 6 2 as for the clock perceptron. The reason for this different behaviour is that 
for the Pot& model, there are many more degrees of freedom to be fixed. 

Thus, when a problem allows the application of both Pons and clock perceptrons with 
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Figure 4. The generalization ability G(a, Q') of the student is plotted a?. a function 
of the reduced number a = p/N  of learned 'questions with answers' for Q' = 
2.3.4,s. 6, 10.1CQ. 1000. For CI = 0 it is G = l/Q': this corresponds to random guessing. For 
a + CO one confirms the suggestion G(u, Q') = I - (Q'- 1) x 0.50048893~-'. 

0.7 r . I I 

0.6 A 
Figure 5. The relative informarion gain I := AI,,, see the text, is presented as a funclion of the 
reduced number (I := p / N  of l m e d  'questions wilh answers' for Q' = 2.3.4.5.6, IO, 100. 

large Q ,  it is more advantageous, concerning the generalization properties, to choose the 
Clock model. 

For Q' = 2 the behaviour of G(a, Q )  for a -+ 00, i.e. R -+ 1, is contained in 
equation. (29); for the Clock model with Q' = 3 one has from [9] the asymptotic result for 
a --f w: G(a, Q = 3) 2: 1 - 2 x 0.5004880301-', i.e. for Q = 3 the prefactor in front 
of a-! exceeds that for Q = 2 by a factor of 2. This leads to the suggestion that for the 
general case the asymptotic behaviour for a + 00 is 

G(a, 9') = 1 - (Q' - 1) x 0.500 488 93a-I . (42) 

Within the numerical accuracy, this result is in fact observed in our calculations. 
A further quantity, which allows a comparison of Potts perceptrons with different Q', 
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is the information gain: before training, all ‘answers’ s’ = 1,  .._, Q on a ‘question’ 
are equally probable, i.e. the informatiqn entropy is IO = In Q ,  whereas afterwards it is 
I(R) = - P,,(R)InP,,(R). Thus, the information ghn is 

Q 
A l ( R )  =logQ’+Cp, , (R) . lnP, , (R)  

I ’ d  

= log Q’ + G InG + (1 - G) In - 
‘ (43) 

In figure 5, the relative information gain AI,l(R) := A l ( R ) / l n Q  is plotted against 01 

for Q = 2,3,4,6,10, 100. Here again, if one compares with the Clock perceptron, a 
qualitatively differen! behaviour is observed (cf figure 9 in [9]) .  

4. Conclusions 

In this paper, within the framework of statistical physics, we havederived a ‘Kuhn-Tucker 
cavity method’ for the generalization ability of perceptrons which have been trained to 
optimal stability. The approach simplifies the calculation of the generalization probability, 
compared with the technically more complicated replica calculation, to which our cavity 
method is equivalent as long as replica symmetry holds. For the present applications this 
is the case, i.e. here our cavity approach is exact. 

At first, we have exemplified OUT method for the case of perceptrons with king neurons, 
where we can compare directly with the known results from the replica approach. Then 
we applied it to the more complicated generalization properties of perceptrons with Potts 
neurons, where we obtained new results, since there no replica calculation exists and would 
be extremely complicated. In both cases, we calculated the generalization ability G(or), i.e. 
the probability for the event that a student perceptron, after having learned ‘with optimal 
stability’ (e.g. with the AdaTron process of [2, SI) to give the same answers as the teacher 
to a certain ‘training set’ of p = LYN questions E” for p = 1, . . . . p ,  gives again the ‘correct 
answer’ (i.e. that of the teacher) to an additional random question Eo. 

The essence of our method is the reaction strength -gxo, which acts against the trial 
implementaion of Eo with a ‘bare’ embedding strength so. This ‘bare embedding’ IO would 
corespond to a simple sequential AdaTron leaming step which does not take into account 
the p = U N  ‘questions with correct answers’ already stored. The reaction is a necessary 
consequence of the fact that those of the already ‘stored patterns’ E” ,  with p = 1 , .  . . , p 
(= U N ) ,  which are at the limit of stability, are perturbed. To counteract this perturbation, 
the embedding strengths x@ must be changed by a certain 8x”, which in turn acts against 
the original attempt to store pattem 0. This necessitates an enhancement of xo by the factor 
1/(1 + g). At the limit K -+ 0, where all coupling degrees of freedom are fixed, one has 
for 01 4 m asymptotically g(0r) N -R(or) --f - 1 .  

In section 2, we first showed the equivalence of this. approach with the known exact 
replica-symmetric solution (see [4]) for the particular case of king neurons, i.e. Q = Q’ = 2 
with real-valued couplings fulfilling the usual spherical constraint. Precisely, we found that 
both approaches are equivalent just at that value R = BO of the overlap L-’ (J tJT)  of 
 student^ and teacher coupling vector, which leads to the maximal value of 01 for given K. 
We even profited from combining different equations from the two approaches. 

We also showed that the replica approach to generalization, as long as replica symmetry 
is not broken, is equivalent to a different cavity theory for generalization, which for the 
learning paradigm would reduce to the simplified cavity theory of Griniasty, see [SI. 
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However, as soon as replica symmetry is broken, the ‘Griniasty-cavity approach’ differs 
from OUT Kuhn-Tucker cavity method, see 16, IO]. (In the present paper, where replica 
symmetry prevails, both approaches are equivalent. However, Griniasty concentrates on 
minimization of a cost function, where& our Kuhn-Tucker cavity approach concentrates on 
learning algorithms.) 

In section 3, both cavity methods have been extended and combined to the case of 
Potrs perceptrons with general values of Q and Q, and by a careful and very accurate 
Monte Carlo implementation of the multi-dimensional integrations involved, we obtained 
the desired results for G(a, Q )  and for the related information gain A I @ ,  Q‘). However, 
the present results for the Potrs models are simply monotonically increasing in I/Q’ and LY 
without any kinks in the derivatives, and G(LY, Q )  vanishes for Q = 00 for all values of 
LY, whereas for the Clock model case it has been shown in [9] that for Q‘ = 00 there is a 
second-order phase transition from a ‘non-generalizing phase’ with C(a)  = 0 for 01 < 2 to 
a ’generalizing phase’ with G(@) > 1 - @/a) at 01 > 2. 

For the present case of Pots model output neurons with finite Q’, we have obtained for 
LY + 00 the asymptotic result G(a, Q‘) 2: 1 - ( Q  - 1) x 0.5004889301-’. 

As already mentioned, we have found that our Kuhn-Tucker theory can also be used 
for problems, where replica symmetry is broken, and in this case it yields results which 
differ from the replica-symmetric calculations. This will be discussed in a following paper, 
[lOl. 
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